This article was downloaded by: [Tomsk State University of Control Systems and

Radio]

On: 18 February 2013, At: 13:29

Publisher: Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Molecular Crystals and Liquid Crystals Science and Technology. Section A. Molecular Crystals and Liquid Crystals

Publication details, including instructions for authors and subscription information:

http://www.tandfonline.com/loi/gmcl19

Synthesis and Structure of LiTiZrX₄ (X = S, Se, Te) Layered Compounds

Zygmunt A. Cybulski ^a

^a Chemical Institute of Technology and Engineering, Technical and Agricultural University, 85-326, Bydgoszcz, Poland

Version of record first published: 23 Oct 2006.

To cite this article: Zygmunt A. Cybulski (1994): Synthesis and Structure of LiTiZrX₄ (X = S, Se, Te) Layered Compounds, Molecular Crystals and Liquid Crystals Science and Technology. Section A. Molecular Crystals and Liquid Crystals, 244:1, 127-133

To link to this article: http://dx.doi.org/10.1080/10587259408050093

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.tandfonline.com/page/terms-and-conditions

This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae, and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand, or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Mol. Cryst. Liq. Cryst. 1994, Vol. 244, pp. 127-133 Reprints available directly from the publisher Photocopying permitted by license only © 1994 Gordon and Breach Science Publishers S.A. Printed in the United States of America

SYNTHESIS AND STRUCTURE OF LiTiZrX4 (X = S, Se, Te) LAYERED COMPOUNDS

ZYGMUNT A. CYBULSKI Chemical Institute of Technology and Engineering, Technical and Agricultural University, 85-326 Bydgoszcz, Poland

Abstract The LiTiZrX4 compounds were slowly formed through a several days reaction between dispersed TiZrX4 phase and LiC_4H_9 . The obtained black crystaline powders are unstable in air. All these compounds exhibit structures close to that of TiX4 and ZrX4.

INTRODUCTION

The intercalation behaviour of ternary selenide of transition metals seems to be less investigated than the binary diselenides. The chalcogenide TiZrTe₄ put in contact with a hexane solution of LiC₄H₉ gives LiTiZrTe₄. It was interesting to study and explain, analogically to the above cases, the interactions of TiZrSe₄ and TiZrS₄ with LiC₄H₉.

The preparation of the LiTiZrX₄ intercalates is performed through reaction between the ternary Titanium-Zirconium-Chalcogenides and a LiC₄H₉ solution in hexane. The LiTiZrX₄ compounds form slowly during a several days reaction. Another way to prepare the LiTiZrX₄ intercalats consist to start from the stoichiometric proportion of the four elements. The reaction in the solid state is carried on in an evacuated silica tube by heating for about 10 days up to 1173 K.

All the new compounds are significantly less stable at room temperature in air than the Silver-Titanium-Zirconium-Chalcogenides.² Therefore the powder samples of LiTiZrX₄ (X = S, Se, Te) were prepared using an epoxide polymer for embedding in order to prevent their decomposition during X-ray diffraction pattern recording.

X-RAY DIFFRACTION AND STRUCTURE

X-ray diffraction values observed and calculated for LiTiZrX₄ (X = S, Se, Te) have been published previously. The X-ray diffraction pattern together with the indexing and intensities are shown in Table 1, 2 and 3.

All the LiTiZrX4 compounds show a small number of diffraction lines. However, for LiTiZrTe4, it is possible to use two cells a hexagonal one with a=385.3±0.7 pm, c=2610.5±0.4 pm , z=2 and a monoclinic one with a=667.4±0.5 pm, b=385.3±0.7 pm , c=2610.5±0.4 pm , β =91.32°, z=4.

For LiTiZrSe₄ it is also possible to index the phase diagram either with a hexagonal cell with a=635.0 \pm 1.3 pm, c=1212.0 \pm 2.4 pm, z=3 or a monoclinic one with a=631.0 \pm 0.98 pm, b=364.5 \pm 0.55 pm, β =91.3°, z=4.

For LiTiZrS₄, it is not possible to index the diagram in the hexagonal symmetry. It can be done only in the monoclinic symmetry with a=612.0±0.8 pm, b=380.7±0.6 pm, c=2486.0±1.1 pm, β =90.50 and z=4.

LiTiZrX₄ consist in a layerlike structure of the CdJ₂ typ. Cationic sites alternatively occupied by Ti and Zr atoms yielding rows perpendicular to the (110) direction.

Figure 1 shows the molal volume change, in per cent, for LiTiZrX₄ chalcogenides in comparison with the corresponding ternary chalcogenides TiZrX₄ versus the X²- radius.

Contrary to the two other LiTiZrX4 phases the molal volume of LiTiZrTe4 is nearly 3.5% smaller than for TiZrTe4. This may be related to the large sites of the phase and the high polarisability of the Li+-Te²⁻ bond.

Table 1. Spacings and intensities of the powder diffraction pattern of LiTiZrTe₄

I [%]	d _{exn} [pm]	Calc. d [pm]	hexagonal hk l	Calc. d [pm]	monoclin. hk l
19	645.83	652.62	004	650.03 642.89	10 1 101
29	562.55	522.10	005	588.60	102
48	326.40	326.31	008	326.23	008
16	306.09	311.56	103	309.12	203
100	297.13	297.10	104	298.47 295.77	11 4 10 8
11	267.76	264.78	106	267.71	206
42	233.64	233.30	108	223.88	214
12	218.17	218.91 217.54	109 00 12	218.45 217.63	302 119
18	192.79	192.65	110	192.97 192.65 192.62	30 7 020 310
26	182.78	182.23	10 12	183.09 182.96	122 21 10
9	163.75	163.96	203	164.16 163.54 163.50	30 11 11 14 223
9	162.48	162.77	10 14	162.51 162.08	40 4 224
9	125.11	125.53 124.81	122;12 <u>2</u> 123;12 <u>3</u>	125.18 125.11 125.03	51 3 42 3 22 14

a=385.3±0.7 pm	a=667.4±0.5 pm
	b=385.3±0.7 pm
c=2610.5±0.4 pm	c=2610.5±0.4 pm
	β=91.32°
$D = 6.41 \text{ gcm}^{-3}$	$D = 6.41 \text{ gcm}^{-3}$
$D_x = 6.49 \text{ gcm}^{-3}$	D _x =6.49 gcm ⁻³
z=2	z=4
S.G.:P 6/m	S.G.:P 2/m

Table 2. Spacings and intensities of the powder diffraction pattern of LiTiZrSe₄

		Calc	hexagonal	Calc.	monoclin.
l I	d _{exn}	d	hk l	d	hk l
[%]	lmal	[pm]		[pm]	
20	618.86	605.80	002	621.84	004
10	317.29	317.49	110	315.60	110
10	306.61	307.12	111	306.64	107
				306.74	$11\overline{2}$
10	294.73	302.90	004	294.25	410
100	281.16	281.21	112	281.43	108
80	271.21	274.95	200	269.16	205
10	227.95	227.28	203	228.18	213
20	223.61	221.75	105	223.98	214;208
20	203.43	203.59	204	202.73	303
40	182.95	183.30	300	182.83	11 11
20	175.71	175.45	302	175.73	307
20	170.25	171.38	214	170.01	10 14
10	159.64	158.74	220	159.71	114
10	151.77	152.52	310	151.75	10 16
		151.45	008		
		151.32	311		
10	141.05	140.61	224	141.33	21 14
10	127.70	129.08	315	127.78	327
				127.64	20 18
10	126.53	126.16	320	126.62	328
				126.39	30 16
10	123.74	123.51	322	123.78	21 17
		123.94	119	123.67	30 16

a=635.0±1.3 pm	a=631.0±0.98 pm
	b=364.5±0.55 pm
c=1212.0±2.4 pm	c=2488±0.45 pm
_	β=91.30
$D = 5.36 \text{ gcm}^{-3}$	·
$D_x = 5.43 \text{ gcm}^{-3}$	$D_x = 5.36 \text{ gcm}^{-3}$
z=3	z=4
S.G.:P 6/m	S.G.:P 2/m

Table 3. Spacings and	intensities of the	powder diffraction	pater of LiTiZrS ₄
- word		P	P#101 01 21112124

I [%]	d _{exn} [pm]	Calc. d [pm]	monoclin. hk l
22	1083.95	1243.99	002
100	829.99	829.39	003
16	565.77	551.12	102
6	547.35	547.36	102
9	417.77	416.39	006
2	310.26	308.69	107
4	295.21	296.59	202
3	276.93	276.44	009
8	259.03	259.77	017
2	233.35	231.11	10 10
3	218.52	219.08	208
3	217.66	217.17	208
1	212.29	212.76	10 11
2	210.64	211.55	10 11
3	193.56	193.33	304
2	191.45	191.38	00 13
2	190.13	189.25	218
2	181.92	181.25	10 13
4	142.48	142.00	411

a=612.0±0.8 pm
b=380.7±0.6 pm
c=2486.0±1.1 pm
β=90.50
$D = 3.41 \text{ gcm}^{-3}$
$D_{x}=3.14 \text{ gcm}^{-3}$
z=4
S.G.:P 2/m

PROPERTIES OF LiTiZrX4

All the compounds are very unstable in air and generate the oxide hydrates of Ti and Zr as a result of hydrolysis. For LiTiZrS₄, the product of hydrolysis is, in the first step, H₂S, then sulfur. The decomposition of LiTiZrSe₄ and LiTiZrTe₄ gives amorphous Se and Te. It is very probable that, in the case of LiTiZrS₄, the decomposition takes place as follows:

 $2 \text{ LiTiZrS}_4 + 7/2 \text{ O}_2 + 5 \text{ H}_2\text{O} \rightarrow 2 \text{ TiZrO}_3(\text{OH})_2 + 2 \text{ LiOH} + 3 \text{ S}_2 + 2 \text{ H}_2\text{S}$

The electrical conductivity was measured in the 297 K to 428 K temperature range. The results of the above measurements show a very good electrical conduction at room temperature. The conductivity decreases with temperature increasing. However, it is lower than for the metals. The LiTiZrX 4 show, within the temperature range from 298 K to 450 K, the conductivity characteristic for metal 3 , from $^{10-1}\Omega^{-1}$ cm $^{-1}$ to 10 $^{-1}$ cm $^{-1}$.

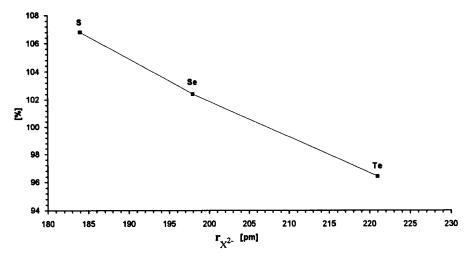


Fig. 1. Percentage change of the molal volume of LiTiZrX4 in comparison with TiZrX4 versus the X2--ion radius.

CONCLUSION

It is possible to prepare the LiTiZrX4 compounds by two different methods: from the elements or from LiC₄H₉ and TiZrX₄ suspension in hexane. The cationic sites are alternatively occupied by Ti or Zr atoms rows perpendicular to the (110) direction. The intercalation by Li-ions causes c parameter enlarged. All the compounds show, within the temperature range from 298 K to 450 K, the conductivity characteristic for metals.

REFERENCES

- 1. Z.A.Cybulski, A.Feltz, Z.anorg.allg.Chem. 569, 145 (1989).
- 2. Z.A.Cybulski, A.Feltz, M.Andratschke, Mater.Res.Bull. 24, 157 (1989).
- 3. Z.A.Cybulski, <u>Struktur und Eigenschaften von Chalkogeniden des Typs</u>
 <u>MIAIIIBIVX4</u>VI, (FSU Jena 1989, Diss.).